Inside the hutch, overall view of the setup. The long tube farthest to the left was exchanged with the tube on the wall behind to lower the q value. The X-ray beam enters at the far right. |
The element that gave the most trouble was the beam stop which was not in the correct place for running initally and also had different components that continually got in the way of the X-ray beam. This caused the I3 signal to be very low (~16) until it was fixed and showed a signal of ~200. After many hours of centering the beam and correcting the scattering from the sides, we began taking data from our samples.
We began with the Trimer A which is three nucleosomes together because it is the smallest set of nucleosomes we will look at this weekend. First, distilled water is sent through the sample cell (about 3 times), then ethanol is sent through (about 2 times). At this point the sample cell is mostly clean so we turned on the air to dry the area for about 30 seconds minimum. After all that, we inserted a buffer, closed the hutch, and ran the buffer. This gives us a base line to subtract out any systematic problems against the actual samples.
We ran everything for 5 seconds with 20 images with a ten second break and then once more. After the buffer, we cleaned the sample cell with water, alcohol, and air once more and put the sample inside. We repeated the set up of 5 seconds, 20 images twice for the sample. This procedure was followed for all of Trimer A which included three dilutions (1x, 2x, 4x) for buffers of 10, 50, 100 and 200.
Today, we are running samples of higher nucleosome arrays. Tetramers and dodecamers (4 and 12 nucleosome arrays respectfully) are much larger structures so the set up had to be modified so that the scattering angles could be measured. This is because larger objects give smaller scattering angles and smaller objects give larger scattering angles. We had some issues with a peak coming off in the z direction from the beam but by changing the guards and the beam stop, this was corrected. Because we are working with the other samples, we lower the beam size to 100 micrometers in the z direction which also lower our intensity so we will be taking longer time intervals when we run.
No comments:
Post a Comment